

Query-Directed Data Mining

Techniques using Python & Parallel Processing Christopher Gillett

Chief Software Architect

Compete, Inc.

Background

- Compete, Inc. analyzes large amounts of data (gigabytes per day), and accrues terabytes of data every year supporting its predictive analysis business
 - Tera-scale storage requirements
 - Massive data processing needs
 - Problem: Ad-hoc research against these large data sources
- Technology platform is Unix clump/cluster/grid of 60+ machines
 - Job level parallelism managed using Portable Batch System
 - Storage is NFS with dedicated NFS servers
 - Storage managed by Compete File System (CFS presented earlier at PyCon 2005).
 - Application code written in a variety of languages: C, C++, Java, Python, etc.

Characterizing our Data

Characterizing Size: Massive data sets, but well-ordered

- Massive amount of archived data
- Terabytes move through our systems monthly
- Running 1.5 2.0 million jobs per year over this data

Characterizing Order: Regular Construction

- Clearly defined field definitions
- Easily understood data components:
 - Dates, User IDs, URLs, etc.

□ Characterizing Data Use: Multiple purposes not always in harmony

- Conventional data processing:
 - "Collect-Process-Aggregate-Present" cycle done periodically
 - Reduces large amounts of data into smaller more manageable units
 - Resultant work product useful but "less dynamic" than larger raw data
 - Ad-hoc searching and retrieval of data using all data sources
 - Requires efficient processing of potential large amounts of data

Query-Directed Data Mining Overview

■ View everything as database – even things that are not in databases

- Information retrieval and querying done using a query language
- SQL or something close to it to manage paradigms not "naturally" in SQL
- Build language and/or runtime extensions to SQL
 - Provide built-in functions to handle situations unique to our data
 - Extensibility incorporated into system from initial design to full realization

Benefits of this approach

- SQL or SQL-like languages well understood and familiar to even casual or novice developers or data professionals
- These languages have extremely clear semantics which lend themselves well to decomposition into machine-generated code
- Encapsulated data access and using SQL to retrieve data means tools don't need to understand any underlying data formats everything can speak and interact in terms of Schema,

Why Not Just Deploy Oracle and Declare Victory?

Full database rollout simply not feasible for our company

- Seriously expensive proposition for a Stage Zero or Stage One company
- Cost to deploy Oracle or IBM DB2 can cost hundred of thousands to millions
- Marketplace peers and competitors have tried this database-centric approach and failed

■ We use databases where they make sense

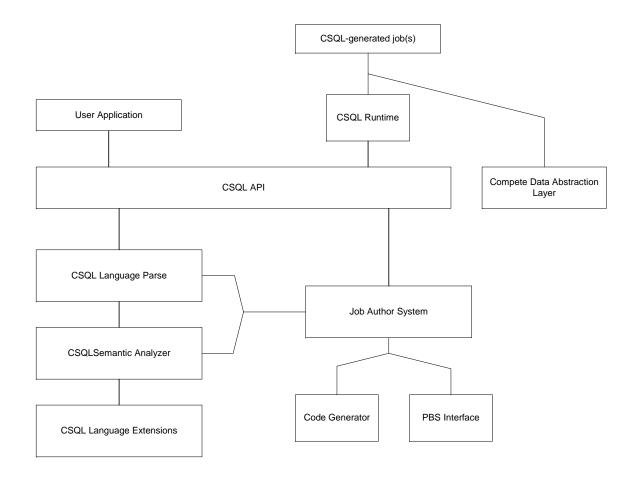
- Output from our usual collect-aggregate-present cycle is loaded in MySQL databases
- These databases are used to drive certain production systems
- Conventional databases can "hide behind" our Query-Directed model
 - A query written in SQL obviously works on a database (duh)
 - A front-end system can direct queries to a running database when available

Architecting and Building a Query-Directed System

■ Major Components:

- SQL Language Processor (CSQL Compete SQL)
 - Provide basic language parsing support
 - Real goal to synthesize intermediate representation (IR) for queries
 - V1.0 essentially implements SELECT
- Code Generator
 - Abstraction class to be extended by every code generator
 - Allows code generation in language of choice
- Query decomposition & Job Authoring System
 - Works in conjunction with CSQL processor and code generator
 - Understands logical ways to decompose queries
 - » Across common dimensions initially date based
 - Understands how to interact with the batch processing system
 - Net effect to allow exploitation of parallel machines at the job level

CSQL System Overview



Compete File System (CFS) and other core services

Role of Python in the Architecture

- □ Initially planned to develop 100% in Python
 - Parsing, job generation, and interaction with a Python-based Query Processing Engine
- Bython performance limitations with respect to I/O processing made this approach unfeasible
- B Revised plan uses Python for "most" of the system
 - Parsing
 - Job Synthesis & Issuing jobs into Portable Batch System
 - Code Generation
 - Limited Python-based runtime for handling certain extensions and built-in functions
 - Some extensions expressed as parser and CG extensions and handled at Query Analysis time
 - Some extensions expressed as calls to a runtime system
 - Acceptable for small data sets
 - Can be painful for large data sets

Leveraging Parallel Resources

- ∃ This is the part that's fun
- Common elements in our data hierarchy include date & other distinct discriminators
 - By generating identical queries divided across these common data fields, many jobs can be generated: select * from myTable where date >= 2005-01-01 and date <= 2005-01-31

can be rewritten:

select * from myTable where date = 2005-01-01
select * from myTable where date = 2005-01-02 ...

- In the above example, 31 jobs get generated and can run on 31 machines simultaneously
 - PBS handles the job control
 - CSQL job execution modules handle synchronization and merging of results
 - All this is managed through a fairly simple set of programmer APIs

Interacting with the Query-Directed System

```
### Example 1: Programmatically running a query
def getData(self):
    query = "select * from myTable where date >= 2005-01-01 and date <= 2005-01-31"
    result = jc.buildFromSQL( query, "myTest")
    launchResult = jc.launchJobs( result[ "jobname" ] )
    waitForRunningJobs( "myTest" )</pre>
```


import md5

from compete.csql.sqlFunction import sqlFunction

```
class sqlBuiltin_MD5(sqlFunction):
```

```
def __init__ (self):
    sqlFunction.__init__(self, "md5", ["s"], "s" )
```

```
def execute (self, args):
```

```
m = md5.md5()
```

```
plainText = args[ 0 ]
m.update( plainText )
result = m.hexdigest()
return result
```


Implementation, Results and Future Directions

- □ CSQL System written 100% in Python
- Job Author system built 100% in Python and works in conjunction with CSQL
- **Combination used on a variety of mission-critical applications with the company**
 - Instrumental in the Compete Data Analysis Workbench
 - Queries used to pull data for common metrics used by data analysts
 - Pleasant aside: Workbench tool 100% wxPython + Python
- Able to comb through terabytes of data representing 3+ years of observations in a reasonable amount of time:
 - Definition of reasonable may vary this is not a "real time" system
 - Very few degenerate cases
 - Cost of system, even including hardware, a fraction of deploying a commercial database

Future Directions and plans for CSQL

- Current query time performance ranges from good to awful
- Substantial room for performance improvements by improving underlying data representation
 - Such a major overhaul can be done without disturbing higher level applications
- Interest in exploring role for MySQL as a front end to a custom data store

