
Copyright © 2000-2005 Compete™ All Rights Reserved. 1

Query-Directed Data Mining

Techniques using Python & Parallel Processing
Christopher Gillett

Chief Software Architect
Compete, Inc.

Copyright © 2000-2005 Compete™ All Rights Reserved. 2

Background

Compete, Inc. analyzes large amounts of data (gigabytes per day), and accrues terabytes of data every
year supporting its predictive analysis business

• Tera-scale storage requirements
• Massive data processing needs
• Problem: Ad-hoc research against these large data sources

Technology platform is Unix clump/cluster/grid of 60+ machines
• Job level parallelism managed using Portable Batch System
• Storage is NFS with dedicated NFS servers
• Storage managed by Compete File System (CFS – presented earlier at PyCon 2005).
• Application code written in a variety of languages: C, C++, Java, Python, etc.

Copyright © 2000-2005 Compete™ All Rights Reserved. 3

Characterizing our Data

Characterizing Size: Massive data sets, but well-ordered
• Massive amount of archived data
• Terabytes move through our systems monthly
• Running 1.5 – 2.0 million jobs per year over this data

Characterizing Order: Regular Construction
• Clearly defined field definitions
• Easily understood data components:

• Dates, User IDs, URLs, etc.

Characterizing Data Use: Multiple purposes not always in harmony
• Conventional data processing:

• “Collect-Process-Aggregate-Present” cycle done periodically
– Reduces large amounts of data into smaller more manageable units
– Resultant work product useful but “less dynamic” than larger raw data

• Ad-hoc searching and retrieval of data using all data sources
– Requires efficient processing of potential large amounts of data

Copyright © 2000-2005 Compete™ All Rights Reserved. 4

Query-Directed Data Mining Overview

View everything as database – even things that are not in databases
• Information retrieval and querying done using a query language
• SQL – or something close to it to manage paradigms not “naturally” in SQL
• Build language and/or runtime extensions to SQL

• Provide built-in functions to handle situations unique to our data
• Extensibility incorporated into system from initial design to full realization

Benefits of this approach
• SQL or SQL-like languages well understood and familiar to even casual or novice developers or data

professionals
• These languages have extremely clear semantics which lend themselves well to decomposition into

machine-generated code
• Encapsulated data access and using SQL to retrieve data means tools don’t need to understand any

underlying data formats – everything can speak and interact in terms of Schema,

Copyright © 2000-2005 Compete™ All Rights Reserved. 5

Why Not Just Deploy Oracle and Declare Victory?

Full database rollout simply not feasible for our company
• Seriously expensive proposition for a Stage Zero or Stage One company
• Cost to deploy Oracle or IBM DB2 can cost hundred of thousands to millions
• Marketplace peers and competitors have tried this database-centric approach and failed

We use databases where they make sense
• Output from our usual collect-aggregate-present cycle is loaded in MySQL databases
• These databases are used to drive certain production systems

Conventional databases can “hide behind” our Query-Directed model
• A query written in SQL obviously works on a database (duh)
• A front-end system can direct queries to a running database when available

Copyright © 2000-2005 Compete™ All Rights Reserved. 6

Architecting and Building a Query-Directed System

Major Components:
• SQL Language Processor (CSQL – Compete SQL)

• Provide basic language parsing support
• Real goal to synthesize intermediate representation (IR) for queries
• V1.0 essentially implements SELECT

• Code Generator
• Abstraction class to be extended by every code generator
• Allows code generation in language of choice

• Query decomposition & Job Authoring System
• Works in conjunction with CSQL processor and code generator

– Understands logical ways to decompose queries
» Across common dimensions – initially date based

– Understands how to interact with the batch processing system
• Net effect to allow exploitation of parallel machines at the job level

Copyright © 2000-2005 Compete™ All Rights Reserved. 7

CSQL System Overview

CSQL API

User Application

CSQL Language Parse

CSQLSemantic Analyzer

Job Author System

Code Generator PBS Interface
CSQL Language Extensions

CSQL-generated job(s)

CSQL Runtime

Compete Data Abstraction
Layer

Compete File System (CFS) and other core services

Copyright © 2000-2005 Compete™ All Rights Reserved. 8

Role of Python in the Architecture

Initially planned to develop 100% in Python
• Parsing, job generation, and interaction with a Python-based Query Processing Engine

Python performance limitations with respect to I/O processing made this approach unfeasible

Revised plan uses Python for “most” of the system
• Parsing
• Job Synthesis & Issuing jobs into Portable Batch System
• Code Generation
• Limited Python-based runtime for handling certain extensions and built-in functions

• Some extensions expressed as parser and CG extensions and handled at Query Analysis time
• Some extensions expressed as calls to a runtime system

– Acceptable for small data sets
– Can be painful for large data sets

Copyright © 2000-2005 Compete™ All Rights Reserved. 9

Leveraging Parallel Resources

This is the part that’s fun
Common elements in our data hierarchy include date & other distinct discriminators

• By generating identical queries divided across these common data fields, many jobs can be generated:
select * from myTable where date >= 2005-01-01 and date <= 2005-01-31

can be rewritten:

select * from myTable where date = 2005-01-01
select * from myTable where date = 2005-01-02 …

• In the above example, 31 jobs get generated and can run on 31 machines simultaneously
• PBS handles the job control
• CSQL job execution modules handle synchronization and merging of results
• All this is managed through a fairly simple set of programmer APIs

Copyright © 2000-2005 Compete™ All Rights Reserved. 10

Interacting with the Query-Directed System

Example 1: Programmatically running a query
def getData(self):

query = “select * from myTable where date >= 2005-01-01 and date <= 2005-01-31”

result = jc.buildFromSQL(query, “myTest”)
launchResult = jc.launchJobs(result["jobname"])
waitForRunningJobs(“myTest”)

Copyright © 2000-2005 Compete™ All Rights Reserved. 11

Extending the CSQL runtime

import md5

from compete.csql.sqlFunction import sqlFunction

class sqlBuiltin_MD5(sqlFunction):

def __init__ (self):
sqlFunction.__init__(self, "md5", ["s"], "s")

def execute (self, args):

m = md5.md5()

plainText = args[0]
m.update(plainText)
result = m.hexdigest()
return result

Copyright © 2000-2005 Compete™ All Rights Reserved. 12

Implementation, Results and Future Directions

CSQL System written 100% in Python

Job Author system built 100% in Python and works in conjunction with CSQL

Combination used on a variety of mission-critical applications with the company
• Instrumental in the Compete Data Analysis Workbench

• Queries used to pull data for common metrics used by data analysts
• Pleasant aside: Workbench tool 100% wxPython + Python

Able to comb through terabytes of data representing 3+ years of observations in a reasonable amount
of time:

• Definition of reasonable may vary – this is not a “real time” system
• Very few degenerate cases
• Cost of system, even including hardware, a fraction of deploying a commercial database

Copyright © 2000-2005 Compete™ All Rights Reserved. 13

Future Directions and plans for CSQL

Current query time performance ranges from good to awful

Substantial room for performance improvements by improving underlying data representation
• Such a major overhaul can be done without disturbing higher level applications

Interest in exploring role for MySQL as a front end to a custom data store

