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Background

Compete, Inc. analyzes large amounts of data (gigabytes per day), and accrues terabytes of data every
year supporting its predictive analysis business

« Tera-scale storage requirements
« Massive data processing needs
« Problem: Ad-hoc research against these large data sources

Technology platform is Unix clump/cluster/grid of 60+ machines
+ Job level parallelism managed using Portable Batch System
« Storage is NFS with dedicated NFS servers
« Storage managed by Compete File System (CFS - presented earlier at PyCon 2005).
« Application code written in a variety of languages: C, C++, Java, Python, etc.
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Characterizing our Data

Characterizing Size: Massive data sets, but well-ordered
« Massive amount of archived data
+ Terabytes move through our systems monthly
* Running 1.5 - 2.0 million jobs per year over this data

Characterizing Order: Regular Construction
* Clearly defined field definitions
 Easily understood data components:
+ Dates, User IDs, URLSs, etc.

Characterizing Data Use: Multiple purposes not always in harmony
« Conventional data processing:
+ “Collect-Process-Aggregate-Present” cycle done periodically
— Reduces large amounts of data into smaller more manageable units
— Resultant work product useful but “less dynamic” than larger raw data
* Ad-hoc searching and retrieval of data using all data sources
— Requires efficient processing of potential large amounts of data
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Query-Directed Data Mining Overview

View everything as database — even things that are not in databases
 Information retrieval and querying done using a query language
« SQL - or something close to it to manage paradigms not “naturally” in SQL
« Build language and/or runtime extensions to SQL
* Provide built-in functions to handle situations unique to our data
+ Extensibility incorporated into system from initial design to full realization

Benefits of this approach

« SQL or SQL-like languages well understood and familiar to even casual or novice developers or data
professionals

« These languages have extremely clear semantics which lend themselves well to decomposition into
machine-generated code

« Encapsulated data access and using SQL to retrieve data means tools don’t need to understand any
underlying data formats — everything can speak and interact in terms of Schema,
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Why Not Just Deploy Oracle and Declare Victory?

Full database rollout simply not feasible for our company
Seriously expensive proposition for a Stage Zero or Stage One company
* Cost to deploy Oracle or IBM DB2 can cost hundred of thousands to millions
« Marketplace peers and competitors have tried this database-centric approach and failed

We use databases where they make sense
«  QOutput from our usual collect-aggregate-present cycle is loaded in MySQL databases
« These databases are used to drive certain production systems

Conventional databases can “hide behind” our Query-Directed model
« A query written in SQL obviously works on a database (duh)
« Afront-end system can direct queries to a running database when available
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Architecting and Building a Query-Directed System

Major Components:
« SQL Language Processor (CSQL — Compete SQL)
* Provide basic language parsing support
 Real goal to synthesize intermediate representation (IR) for queries
+ V1.0 essentially implements SELECT

« Code Generator
« Abstraction class to be extended by every code generator
+ Allows code generation in language of choice

*  Query decomposition & Job Authoring System
 Works in conjunction with CSQL processor and code generator
— Understands logical ways to decompose queries
» Across common dimensions — initially date based
— Understands how to interact with the batch processing system
* Net effect to allow exploitation of parallel machines at the job level
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CSQL System Overview
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Role of Python in the Architecture

Initially planned to develop 100% in Python
 Parsing, job generation, and interaction with a Python-based Query Processing Engine

Python performance limitations with respect to I/O processing made this approach unfeasible

Revised plan uses Python for “most” of the system
« Parsing
« Job Synthesis & Issuing jobs into Portable Batch System
« Code Generation
* Limited Python-based runtime for handling certain extensions and built-in functions
« Some extensions expressed as parser and CG extensions and handled at Query Analysis time
« Some extensions expressed as calls to a runtime system
— Acceptable for small data sets
— Can be painful for large data sets
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Leveraging Parallel Resources

This is the part that’s fun
Common elements in our data hierarchy include date & other distinct discriminators

« By generating identical queries divided across these common data fields, many jobs can be generated:
select * from myTable where date >= 2005-01-01 and date <= 2005-01-31

can be rewritten:

2005-01-01
2005-01-02 ..

select * from myTable where date
select * from myTable where date

* Inthe above example, 31 jobs get generated and can run on 31 machines simultaneously
 PBS handles the job control
« CSQL job execution modules handle synchronization and merging of results
« All this is managed through a fairly simple set of programmer APIs
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Interacting with the Query-Directed System

### Example 1: Programmatically running a query
def getData(self):

query = “select * from myTable where date >= 2005-01-01 and date <= 2005-01-31~
result = jc.buildFromSQL( query, “myTest”)

launchResult = jc.launchJdobs( result[ "jobname™ ] )

waitForRunningJobs( “myTest” )
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Extending the CSQL runtime

import md5
from compete.csqgl.sqglFunction import sqglFunction
class sqlBuiltin_MD5(sqlFunction):
def __init__ (self):
sglFunction. _init_ ( self, "md5", ["s"], "'s" )
def execute (self, args):
m = md5.md5Q0)
plainText = args[ O ]
m.update( plainText )

result = m_hexdigest()
return result
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Implementation, Results and Future Directions

CSQL System written 100% in Python

Job Author system built 100% in Python and works in conjunction with CSQL

Combination used on a variety of mission-critical applications with the company
* Instrumental in the Compete Data Analysis Workbench
* Queries used to pull data for common metrics used by data analysts
+ Pleasant aside: Workbench tool 100% wxPython + Python

Able to comb through terabytes of data representing 3+ years of observations in a reasonable amount
of time:

+ Definition of reasonable may vary — this is not a “real time” system
« Very few degenerate cases
« Cost of system, even including hardware, a fraction of deploying a commercial database
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Future Directions and plans for CSQL

Current query time performance ranges from good to awful

Substantial room for performance improvements by improving underlying data representation
Such a major overhaul can be done without disturbing higher level applications

Interest in exploring role for MySQL as a front end to a custom data store
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