
©2005 MindView, Inc.
Training & Consulting
Bruce@EckelObjects.com
www.MindView.net

OO Design in Python

OO Design in Python ©2005 www.MindView.net 2

OO Design is well understood?

Reasonably … from a certain point of
view
Stories, scheduling, object discovery,
design, feedback, iteration

All fairly similar
But…

OO Design in Python ©2005 www.MindView.net 3

In the last few years, my hobby has
been “challenging accepted knowledge”
(Usually causing a lot of trouble in the
process)
A consultant’s job is to ask the hard
questions

OO Design in Python ©2005 www.MindView.net 4

The point I want to make

Design techniques are influenced by the
languages they are about
…Or that the technique-creators know
Much of OO design is the same
What is different because we’re using a
dynamic language?

OO Design in Python ©2005 www.MindView.net 5

Example: UML

Filled or not? (Is the object
“owned” or shared?) Meaningful
in C++, not so much in Java, not

at all in Python

OO Design in Python ©2005 www.MindView.net 6

Example: Design Patterns
The GoF book was written primarily with
C++ in mind, and pre-template C++ at
that
One Smalltalk programmer, very limited
influence
One pattern in particular was the
favorite of one author, least favorite of
another

Review of OOP in Python

class Pet:
count = 0 # Static field
def __init__(self, petName = "Nameless"):

self.name = petName # Normal field
Pet.count += 1 # Access a static field

def __del__(self):
print self.name, "destructor"

def __str__(self):
return self.__class__.__name__ + \

" " + self.name
def speak(self): print self, "speaking"
def __add__(self, other) :

print "mating", self, "with", other
@staticmethod
def getCount(): return Pet.count

p = Pet()
p.speak() # Pet Nameless speaking

OO Design in Python ©2005 www.MindView.net 9

Inheritance

class Dog(Pet): pass

Constructors inherit too!
d = Dog("Bosco")
d.speak() # Dog Bosco speaking

OO Design in Python ©2005 www.MindView.net 10

Multiple inheritance

class Amphibian:
def swim(self):

print self, "swimming"

Multiple inheritance:
class Gecko(Amphibian, Pet): pass

g = Gecko("Frank")
g.swim() # Gecko Frank swimming

OO Design in Python ©2005 www.MindView.net 11

Operator overloading & destructors

g + d # mating Gecko Frank with Dog Bosco
Automatically reflexive:
d + g # mating Dog Bosco with Gecko Frank
Calling a static method:
print Pet.getCount() # 3
Bosco destructor
Frank destructor
Nameless destructor

(Turn on your V-chips)

OO Design in Python ©2005 www.MindView.net 12

Type-class unification

class MyList(list): pass
l = MyList([1,2,3])
print l # [1, 2, 3]
class MyInt(int): pass

OO Design in Python ©2005 www.MindView.net 13

Interface Inheritance vs.
Implementation Inheritance

Why do we inherit?
Statically typed languages: to allow
polymorphism by creating a common
interface – upcast to “forget” specific type
Dynamically typed & Duck typed: the
language doesn’t care what the interface is

You inherit to reuse the implementation, adding to
it and/or modifying the behavior

Much code vanishes when you can just “send
messages to objects.”

OO Design in Python ©2005 www.MindView.net 14

Does Python need interfaces?
I’ve thought:

Interfaces are for static type checking
Python is dynamically typed

But from yesterday’s conversation:
Interfaces allow you to find out more about the
type before you call a method
Can produce less coupling at the point of
creation
Can be a helpful way to communicate about
design, ala design patterns

But what about this:

class Interface(object):
def method1(self): raise NotImplementedError
def method2(self): raise NotImplementedError
def method3(self): raise NotImplementedError

class Implementation1(Interface):
def method1(self): print "Implementation1.method1"
def method2(self): print "Implementation1.method2"
def method3(self): print "Implementation1.method3"

class Implementation2(Interface):
def method1(self): print "Implementation2.method1"
def method2(self): print "Implementation2.method2"
def method3(self): print "Implementation2.method3"

def f(iface):
print iface.__class__.__name__,
if isinstance(iface, Interface):

print "implements Interface“
else:

print "doesn't implement Interface"

f(Interface())
f(Implementation1())
f(Implementation2())
f(1)

output = """
Interface implements Interface
Implementation1 implements Interface
Implementation2 implements Interface
int doesn't implement Interface
"""

PEP 245 effectively formalizes this
Slightly less work to create & use
What else would builtins buy you?

OO Design in Python ©2005 www.MindView.net 17

Does Python need adapters?
No, adapters are “just” a convenience
The basic idea: connecting two incompatible
objects
But adapters do make it easier
Especially when working with larger systems
like frameworks

Reduce the handwork to make classes work with
a framework

Also make adaptation more commonplace
and natural by formalizing them in the
language

OO Design in Python ©2005 www.MindView.net 18

Delegation (structural)
Midway between composition and inheritance
Inheritance: you get the whole interface
Composition: underlying object is hidden
Delegation: Some or all of the interface is
exposed
“Fronting” for an object happens often in
design patterns

Proxy: you can insert operations before and after
the call

Must inherit from object for new-style behavior:
class Service(object):

def a(self): print "Service.a"
def b(self, arg): print "Service.b with argument", arg
def c(self): print "Service.c"

def exercise(s):
print "==== " + s.__class__.__name__ + " ===="
try:

s.a()
s.b("Howdy")
s.c()

except NotImplementedError, e:
print "not implemented:", e

exercise(Service())
output = """
==== Service ====
Service.a
Service.b with argument Howdy
Service.c
"""

The whole interface:

class Inheritor(Service): pass

exercise(Inheritor())
output = """
==== Inheritor ====
Service.a
Service.b with argument Howdy
Service.c
"""

Same interface minus c():
class Delegator:

def __init__(self):
self.service = Service()

def __getattr__(self, name):
if name == 'c':

raise NotImplementedError, "c()"
if hasattr(Service, name):

return getattr(self.service, name)

exercise(Delegator())
output = """
==== Delegator ====
Service.a
Service.b with argument Howdy
not implemented: c()
"""

Since 2.2, you can subtract after inheritance:

class SubtractionInheritance(Service):
def __getattribute__(self, name):

if name == 'c':
raise NotImplementedError, "c()"

return Service.__getattribute__(self, name)

exercise(SubtractionInheritance())
output = """
==== SubtractionInheritance ====
Service.a
Service.b with argument Howdy
not implemented: c()
"""

Performing operations before/after call (Proxy):

class Proxy:
def __init__(self):

self.service = Service()
def __getattr__(self, name):

if hasattr(Service, name):
print "Entering", name
return getattr(self.service, name)

def c(self):
print "Pre-call operation"
result = self.service.c()
print "Post-call operation"

exercise(Proxy())
output = """
==== Proxy ====
Entering a
Service.a
Entering b
Service.b with argument Howdy
Pre-call operation
Service.c
Post-call operation
"""

OO Design in Python ©2005 www.MindView.net 25

Generators

Special case of a factory
Still a pattern, but language support
changes the sense of it
Iterator pattern also built into a number
of places

def fibonacci(count):
def fib(n):

if n < 2: return 1
return fib(n-2) + fib(n-1)

n = 0
while n < count:

yield fib(n)
n += 1

for f in fibonacci(20): # Automatically iterable
print f,

output="""
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
1597 2584 4181 6765
"""

OO Design in Python ©2005 www.MindView.net 27

Aspect-oriented
programming/crosscutting

I’ve become convinced that this is only
a subset of metaclasses
See the example of adding
“synchronized” to Python methods in
Thinking in Python

I seem to remember that Alex helped with
this

OO Design in Python ©2005 www.MindView.net 28

Only touched on the issues

Many more questions to ask. For
example:
Visitor pattern allows you to dynamically
add new methods to a fixed hierarchy of
classes. What does “fixed hierarchy”
and “dynamically add new methods”
mean in the context of Python?

OO Design in Python ©2005 www.MindView.net 29

Dynamic languages always better?
Tempting to say so, but I’m not always
sure
For one thing, that statement may
assume that all programmers are at the
same experience level
It’s easy to produce sheet rockers, more
difficult to produce plumbers and
electricians, and good finish carpenters
are not so common

OO Design in Python ©2005 www.MindView.net 30

“Thinking in Python” wiki project
Languishing far too long
Idea: put it into a wiki, let the community add
ideas, examples, and correct details
When it’s stable, I go through and rewrite it
into a book, publish
Need to work out legal issues for taking
community contributions and turning them
into a book, but there’s precedent in the
“Python Cookbook”

OO Design in Python ©2005 www.MindView.net 31

Open Space on OO design

6:00 – 6:30 Room 310

