
©2005 Alex Martelli aleaxit@gmail.com

DP and OOP in Python

Objects by Design

What’s OOP?
I dunno -- what’s OOP with you?

2

INTRODUCTION

Alley Oop made his official "big time" debut in the nation's funny pages on August 7, 1933.
Not surprisingly, Alley found himself in a jam in the very first panel—lost in the jungles of
Moo and surrounded by hungry dinosaurs. Within a week of his initial appearance he had
stumbled upon Dinny, the dinosaur who quickly became his pet and principal means of
transportation while in Moo. Soon after, he made his way out of the jungle and met up with
King Guz and his rhyming friend, Foozy. Along the way he met his new girlfriend, Ooola,
and the King's advisor, the Grand Wizer.

Later in his career, Alley Oop was plucked from the Land of Moo by Dr. Wonmug's time
machine. Dr. Wonmug brought Alley and Ooola to the 20th century, where a new series of

Alley Oop...?

OOP as delegation
intrinsic/implicit:

instance -> class
class -> descriptors
class -> base classes

overt/explicit:
containment and delegation (hold/wrap)
delegation to self

inheritance: more rigid; IS-A...
hold/wrap: more flexibile; USES-A...

3

Pydioms: hold vs wrap
“Hold”: object O has subobject S as an
attribute (maybe property) -- that’s all

use self.S.method or O.S.method
simple, direct, immediate, but coupling on
the wrong axis

“Wrap”: hold (often via private name) plus
delegation (so you use O.method)

explicit (def method(self...)...self.S.method)
automatic (delegation in __getattr__)
gets coupling right (Law of Demeter)

4

class RestrictingWrapper(object):
def __init__(self, w, block):
self._w = w
self._block = block

def __getattr__(self, n):
if n in self._block:
raise AttributeError, n

return getattr(self._w, n)
...

Inheritance cannot restrict!
However...: what about special methods?

Wrapping to restrict

5

Self-delegation == TMDP
Template Method design pattern
great pattern, lousy name

way overloaded
classic version:

abstract base’s organizing method...
...calls hook methods of subclasses
client code calls OM on instances

mixin version:
mixin base’s OM, concrete classes’ hooks

6

class Queue:
...
def put(self, item):
self.not_full.acquire()
try:
while self._full():
self.not_full.wait()

self._put(item)
self.not_empty.notify()

finally:
self.not_full.release()

def _put(self, item):
self.queue.append(item)

...

TMDP in Queue.Queue

7

Queue’s TMDP
Not abstract, often used as-is

so, must implement all hook-methods
subclass can customize queueing discipline

with no worry about locking, timing, ...
default discipline is simple, useful FIFO
could override hook methods (_init,
_qsize, _empty, _full, _put, _get) AND...
...data (maxsize, queue), a Python special

8

class LifoQueueA(Queue):
def _put(self, item):
self.queue.appendleft(item)

class LifoQueueB(Queue):
def _init(self, maxsize):
self.maxsize = maxsize
self.queue = list()

def _get(self):
return self.queue.pop()

Customizing Queue

9

DictMixin’s TMDP
Abstract, meant to multiply-inherit from

does not implement hook-methods
subclass must supply needed hook-methods

at least __getitem__, keys
if R/W, also __setitem__, __delitem__
normally __init__, copy
may override more (for performance)

10

class Chainmap(UserDict.DictMixin):
def __init__(self, mappings):
self._maps = mappings

def __getitem__(self, key):
for m in self._maps:
try: return m[key]
except KeyError: pass

raise KeyError, key
def keys(self):
keys = set()
for m in self._maps:
keys.update(m)

return list(keys)

Exploiting DictMixin

11

State and Strategy DPs
Not unlike a “Factored-out” TMDP

OM in one class, hooks in others
OM calls self.somedelegate.dosomehook()

classic vision:
Strategy: 1 abstract class per decision,
factors out object behavior
State: fully encapsulated, strongly
coupled to Context, self-modifying

Python: can switch __class__, methods

12

Strategy DP
class Calculator(object):
def __init__(self):
self.strat=Show()

def compute(self, expr):
res = eval(expr)
self.strat.show('%r=%r'% (expr, res))

def setVerb(self, quiet=False):
if quiet: self.strat = Quiet()
else: self.strat = Show()

class Show(object):
def show(self, s): print s

class Quiet(Show):
def show(self, s): pass

13

State DP
class Calculator(object):
def __init__(self): self.state=Show()
def compute(self, expr):
res = eval(expr)
self.state.show('%r=%r'% (expr, res))

def setVerb(self, quiet=False):
self.state.setVerb(self, quiet)

class Show(object):
def show(self, s): print s
def setVerb(self, obj, quiet):
if quiet: obj.state = Quiet()
else: obj.state = Show()

class Quiet(Show):
def show(self, s): pass

14

Switching __class__
class RingBuffer(object):
class _Full(object):
def append(self, item):
self.d[self.c] = item
self.c = (1+self.c) % MAX

def tolist(slf):
return slf.d[slf.c:]+slf.d[:slf.c]

def __init__(self): self.d = []
def append(self, item):
self.d.append(item)
if len(self.d) == MAX:
self.c = 0
self.__class__ = self._Full

def tolist(self): return list(self.d)
15

Switching a method
class RingBuffer(object):
def __init__(self): self.d = []
def append_full(self, item):
self.d.append(item)
self.d.pop()

def append(self, item):
self.d.append(item)
if len(self.d) == MAX:
self.c = 0
self.__class__ = self._Full

def tolist(self): return list(self.d)

16

OOP for polymorphism
intrinsic/implicit/classic:

inheritance (single/multiple)
overt/explicit/pythonic:

adaptation and masquerading DPs
special-method overloading
advanced control of attribute access
custom descriptors and metaclasses

17

Python's polymorphism
...is notoriously based on duck typing...:

18
(why a duck?)

 1 2 3 4 5 6 7 8

"Dear Farmer Brown,
The pond is quite boring.
We'd like a diving board.

Sincerely,
The Ducks."

Click, clack, quack. Click, clack, quack.
Clickety, clack, quack.

The End. Now, let's play!

 1 2 3 4 5 6 7 8

This Web site is for parents or teachers and their kids
to surf together.

It all begins here. Read this story with your kids, then
play related games. You don't have to have seen this
particular episode of Between the Lions. You can also
print this story to read away from the computer.

class Rats(object):
def __setattr__(self, n, v):
if not hasattr(self, n):
raise AttributeError, n

super(Rats, self).__setattr__(n, v)

affords uses such as:

class Foo(Rats):
bar, baz = 1, 2

so no new attributes can later be bound.
None of __slots__'s issues (inheritance &c)!

Restricting attributes

19

__slots__ strictly, only to save memory
classes with LOTS of tiny instances

Rats (& the like) for everything else

(if needed at all... remember *AGNI*!)

So, __slots__ or Rats?

20

class _const(object):
class ConstError(TypeError): pass
def __setattr__(self, n, v):
if n in self.__dict__:
raise self.ConstError, n

super(_const, self).__setattr__(n, v)
import sys
sys.module[__name__] = _const()

class instance as module

21

def restrictingWrapper(w, block):
class c(RestrictingWrapper): pass
for n, v in get_ok_specials(w, block):
def mm(n, v):
def m(self, *a, **k):
return v(self._w, *a, **k)

return m
setattr(c, n, mm(n, v))

return c(w, block)
def get_ok_specials(w, block):
'use inspect's getmembers and
ismethoddescriptor, skip nonspecial
names, ones in block, ones already in
RestrictingWrapper, __getattribute__'

specials come from class

22

import inspect as i
def get_ok_specials(w, block):
for n, v in i.getmembers(
 w.__class__, i.ismethoddescriptor):
if (n[:2] != '__' or n[-2:] != '__'
 or n in block or
 n == '__getattribute__' or
 n in RestrictingWrapper.__dict__):
continue

yield n, v

get_ok_specials details

23

Null Object DP
instead of None, an object "innocuously
polymorphic" with any expected objects
"implement every method" to accept
arbitrary arguments and return self
special methods need special care
advantage: avoid many "if x is None:" tests

or other similar guards

24

class Null(object):
def __init__(self, *a, **k): pass
def __call__(self, *a, **k):
return self

def __repr__(self): return 'Null()'
def __len__(self): return 0
def __iter__(self): return iter(())
__getattr__ = __call__
__setattr__ = __call__
__delattr__ = __call__
__getitem__ = __call__
__setitem__ = __call__
__delitem__ = __call__

A general Null class

25

class NoLog(object):
def write(self, data): pass
def writelines(self, data): pass
def flush(self): pass
def close(self): pass

either class allows:
if mustlog: logfile = file(...)
else: logfile = Null() # or NoLog()
then throughout the code, just
logfile.write(xx) # no guard 'if logfile'

specialized version may detect more errors

A specialized Null class

26

OOP for instantiation
one class -> many instances

same behavior, but distinct state
per-class behavior, per-instance state

...but sometimes we don't want that...
while still requiring other OOP thingies
thus: Singleton (forbid "many instances")
or: Monostate (remove "distinct state")

27

class Singleton(object):
def __new__(cls, *a, **k):
if not hasattr(cls, '_inst'):
cls._inst = super(Singleton, cls
).__new__(cls, *a, **k)

return cls._inst

subclassing is a problem, though:
class Foo(Singleton): pass
class Bar(Foo): pass
f = Foo(); b = Bar(); # ...???...
problem is intrinsic to Singleton

Singleton ("Highlander")

28

class Callable(object):
def __init__(self, init args):

set instance data from init args
def __call__(self, more args):

use instance data and more args

def outer(init args):
set local vars from init args
def inner(more args):

use outer vars and more args
return inner

"closure factory" is simpler!

Class or closure?

29

class CallableSubclassable(object):
def __init__(self, init args):

set instance data from init args
def do_hook1(self, ...): ...
def do_hook2(self, ...): ...
def __call__(self, more args):

use instance data and more args
and call hook methods as needed

class is more powerful and flexible, as
subclasses may easily customize

use only the power you need!

Closure or class?

30

class Borg(object):
_shared_state = {}
def __new__(cls, *a, **k):
obj = super(Borg, cls
).__new__(cls, *a, **k)

obj.__dict__ = cls._shared_state
return obj

subclassing is no problem, just:
class Foo(Borg): pass
class Bar(Foo): pass
class Baz(Foo): _shared_state = {}
data overriding to the rescue!

Monostate ("Borg")

31

