
Localized Type Inferencing
in Python

Brett Cannon
Aaron Keen

California Polytechnic State University, San Luis Obispo

PyCon 2005

Type Inferencing

Tightest mapping of possible types to a
variable
Determined statically
Not allowed to make wrong inference

compilation decisions based on this
info

Can type inferencing be added to
Python’s compiler for a
performance increase?

No semantic changes to language or compiler allowed.
Speed-up achieved from type-specific opcodes.

Hindley-Milner

Used in Standard ML and Haskell
bottom-up or top-down algorithm
Allows abstract types
Cannot handle function arguments of
other functions used in a polymorphic
fashion

Cartesian Product /
Iterative Type Analysis

What Starkiller uses
Iteratively try to find fixed point where
types don’t change
Works with concrete types only

The Compiler

Input of parse tree, output of bytecode
bytecode typeless sans list/dict/tuple
creation

Can be considered a self-contained
program

i.e., does not use anything to base
compilation on except parse tree

The Problem

Does not check ‘import’ dependencies
Can compile code that imports non-
existent modules
Can swap in different module than
what was present at compile-time

You can’t depend on what is contained in
other modules

The Language

Highly dynamic

Injection into another module’s global namespace
allowed

Tons of other ways to play with a variable’s value
at run-time

Standard library (tracing, frames, etc.)
exacerbates situation

The Other Problem

An external module can inject/replace
objects in a module’s global namespace

What This All Means

Since another module can change a
module’s global namespace and we can’t
know anything about another module at
compile-time
Everything at the global level must be
considered unknown

Can’t infer squat!
Or can we ?

Atomic Types in Local Scope

Any type that is syntactically supported and defined locally

integrals (int, long)

floats

complex numbers

basestring (str, Unicode)

lists

tuples

dicts

The Algorithm
Implemented using Python 2.3.4

‘if’ Statement

a = 1 # a = (integral,)
if foo: # a = (integral,)
 a = [a, 2] # a = (list,)
elif bar: # a = (integral,)
 a = (a, 2) # a = (tuple,)
elif baz: # a = (integral,)
 pass
else: # a (integral,)
 a = {0:a, 1:2} # a = (dict,)

a = (integral, list, tuple, dict)
a[1]

Loops

a = 1 # a = (integral,)
for x in range(10):
 a + 3
 a = 1.0 # a = (float, integral)
else: # a = (float, integral)
 a = 4+0j # a = (complex,)

a = (complex, float, integral) !
a / 2

try/except/finally/else
a = () # a = (tuple,)
try: # a = (tuple,)
 a[0]
 a = [] # a = (tuple, list) !
except Exception: # a = (tuple, list)
 pass
except: # a = (tuple, list)
 a = {} # a = (dict,)
else: # a = (tuple, list) !
 a = “PyCon” # a = (basestring,)

a = (tuple, list, dict, basestring)
a[0]

Type Annotations

For functions or methods
Stored in first line of comment for a
function; “””::128::”””
Done by hand
Completely optional

Done to see if optional static type
checking could give performance boost

Other Tidbits

Closures properly supported
Contents of tuples left unknown

simplified implementation
Highest accuracy for ‘try’ block not done

for simplicity reasons
Detect ‘break’?

Choosing New Opcodes
Based on what types compiler could infer
for various opcodes
Used BitTorrent, Mailman, PIL, Plone,
Pyrex, PythonCard, SciPy, Twisted, and
the Python Standard Library
Ranked based on:

raw count
count/LOC

New Opcodes

Name Replaces Speedup
DICT_STORE STORE_SUBSCR(dict, *, *) 3%
STR_FORMAT BINARY_MODULE(basestring) 8%
LIST_APPEND list.append() 39%
STR_CONCAT BINARY_ADD(basestring,

basestring) 8%
STR_MULT BINARY_MULTIPLY(integral,

basestring) 9%
STR_JOIN basestring.join() 20%

INT_LSHIFT BINARY_LSHIFT(integral,
integral) 16%

DICT_GETITEM BINARY_SUBSCR(dict, *) 6%
LIST_CMP COMPARE_OP(*, list, list) 9%

DICT_HAS_KEY dict.has_key() 51%

Benchmarks

SpamBayes
Pyrex (with/without annotations)
PyBench
Parrotbench (with/without annotations)

Results

SpamBayes - 2.1%
PyBench -0.2% (0.5%)

Pyrex (base) 1.0%
Pyrex (annotations) 1.6%
Parrotbench (base) 0.7%

Parrotbench (annotations) 0.8%

Also found 3 unit tests in Python Standard
Library that were testing for things at run-

time now caught at compile-time

but, overall ...

It ain’t worth it!
But if we changed some things ...

What Changes Could Help

“Unsimplify” implementation
 Timestamp/checksum import
dependencies
Specify when injecting over built-ins

Questions?

