input geom2d; gddU:=0.35cm; beginfig(1); % nos trois points A = Point(0,0); B = Point(6,0); C = Point(0.8,4); T_ABC = Triangle(A,B,C); C_I = CercleInscrit(T_ABC); C_A = CercleExinscrit(T_ABC,2); C_B = CercleExinscrit(T_ABC,3); C_C = CercleExinscrit(T_ABC,1); d_AB = Droite(A,B); d_BC = Droite(B,C); d_CA = Droite(C,A); I = Centre(C_I); I_C_A = Centre(C_A); I_C_B = Centre(C_B); I_C_C = Centre(C_C); d_CAA = Droite(A,I_C_A); d_CAB = Droite(B,I_C_B); d_CAC = Droite(C,I_C_C); A_S = AxeDeSimilitude(C_A,C_B,C_C); P_CA = ProjectionPointSurDroite(I_C_A,A_S); P_CB = ProjectionPointSurDroite(I_C_B,A_S); P_CC = ProjectionPointSurDroite(I_C_C,A_S); P_A = Inversion(P_CA,C_A); P_B = Inversion(P_CB,C_B); P_C = Inversion(P_CC,C_C); C_R = CentreRadical(C_A,C_B,C_C); % les neuf points pour les cercles d’euler (tangent intérieur) % et d’apollonius (tangent extérieur) D1 = Droite(C_R,P_A); P1 = IntersectionDroiteCercle(D1,C_A,1); Q1 = IntersectionDroiteCercle(D1,C_A,2); D2 = Droite(C_R,P_B); P2 = IntersectionDroiteCercle(D2,C_B,1); Q2 = IntersectionDroiteCercle(D2,C_B,2); D3 = Droite(C_R,P_C); P3 = IntersectionDroiteCercle(D3,C_C,2); Q3 = IntersectionDroiteCercle(D3,C_C,1); % le cercle d’apollonius Apol = CercleTroisPoints(P1,P2,P3); colorie Apol withcolor 1.05*Lavender; trace Apol withcolor CadetBlue; % cercle inscrit colorie C_I withcolor LightBlue; % cercles exinscrits colorie C_A withcolor PapayaWhip; colorie C_B withcolor PapayaWhip; colorie C_C withcolor PapayaWhip; trace d_AB; trace d_BC; trace d_CA; trace d_CAA dashed evenly; trace d_CAB dashed evenly; trace d_CAC dashed evenly; trace T_ABC withpen pencircle scaled 2 withcolor Chocolate; C_E = CercleEuler(T_ABC); trace C_E withcolor Goldenrod; pointe P1; pointe P2; pointe P3; pointe Q1; pointe Q2; pointe Q3; marque.llft "A"; marque.urt "B"; marque.urt "C"; Fenetre(-7,-12,20,15) endfig; end.